Top latest Five المعين Urban news
المعين: أقطاره متعامدة، ولكن أطوالها غير متساوية، كما أنها تشكل زاوية داخلية قائمة في المركز.[٣]
استخدامُك هذا الموقع هو موافقةٌ على شروط الاستخدام وسياسة الخصوصية. ويكيبيديا ® هي علامة تجارية مسجلة لمؤسسة ويكيميديا، وهي منظمة غير ربحية.
تجعل الكوكيز ويكي هاو يعمل بشكل أفضل. باستمرارك في استخدام موقعنا، أنت توافق على سياسة الكوكيز الخاصة بنا.
ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي :
المربع: أقطاره متساوية في الطول، كما أنها تنصف بعضها البعض في زاوية قائمة.[٣]
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في مجال الرياضيات وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.
يعتبر المربع والمعين من الأشكال الرباعية الهندسية التي نراها كل يوم، فعلى سبيل المثال، نرى شكل المربع في الطاولات، وصناديق البيتزا، بينما نرى الألماس والطائرة الورقية تتخذ شكل المعين، وغالباً يعتبر المربع معينًا لأنه يطبق خصائص المعين، أما المعين فلا يعتبر مربع، وذلك بسبب اختلاف بعض الخصائص الأخرى بينهما.[١]
الحساب بمعرفة طول القاعدة والارتفاع، عن طريق القانون التالي مساحة المعين = طول القاعدة* الارتفاع
تسجيل الدخول نسيت كلمة المرور؟ مستحدم جديد؟ انشئ حساب هذا الموقع محمي بواسطة recaptcha ، تطبّق شروط الخدمة و سياسة الخصوصية لجوجل تسجيل حساب جديد
مواضيع ذات صلة بـ : طرق حساب مساحة المعين محيط المعين ومسائل رياضية تطبيقية قانون مساحة المربع طريقة زراعة السبانخ تاريخ بناء القلاع تعريف الزراعة المطرية دراسة التصميم الداخلي ارتفاع المعين ومسائل رياضية تطبيقية طرق حساب مساحة المستطيل الزوار شاهدوا أيضاً
فيسبوك جوجل حساب ويكي هاو ليس لديك حساباً؟ إنشاء website حساب
أجدد المقالات الأكثر رواجاً الأكثر رواجاً أجدد المقالات الرئيسية /
يمكن رؤية شكل المعين في مجموعةٍ متنوعةٍ من الأشياء في عالمنا المحيط، مثل الطائرة الورقية، ونوافذ السيارة، إشارات المرور، بعض المجوهرات تكون على شكل معينٍ، أيضًا هيكل المباني، المرايا... .